Tummas Napoleon Arge Ph.D. Verja
Skriva út

Tummas Napoleon Arge verjir ph.d. á DTU

týsdagur 26.11.2024, kl. 13:00, DTU Physics, Lyngby

Týsdagin 26. november kl. 14 fer Tummas Napoleon Arge at verja ph.d.-ritgerð sína á DTU Physics.

Ritgerðin kallast: “Squeezed light generation on thin film lithium niobate”.

Klemt ljós er eitt tað týdningarmesta tilfeingi innan kvantu ljósfrøði og kann nýtast til kvantu teldur, kvantu samskifti og til at gera neyv mátingartól. Hesar skipanir verða ofta bygdar við linsum, speglum og øðrum stórum hjálpartólum. Fyri at kunna byggja enn størri skipanir kann mann integrera ljósfrøðiligu skipanina á ein telduchip. Í granskingini vóru keldur til klemt ljós gjørdar á lithium niobat chips. Hesar keldur vóru bæði meira einfaldar, enn tað, sum hevur verið gjørt higartil, samstundis sum at ljósið var væl meira klemt. 

Tobias Gehring, lektari á DTU Physics, hevur verið høvuðsvegleiðari í ph.d.-arbeiðnum. 
Ulrik L. Andersen, professari og Jonas S. Neergaard-Nielsen, lektari, báðir á DTU Physics, hava verið hjávegleiðarar.

Í metingarnevndini eru
Mikkel Heuck, seniorgranskari á DTU Electro
Alberto Politi, Associate Professor á University of Southampton
Harald Herrmann, Lecturer á Paderborn University

Alexander Huck, lektari á DTU Physics, leiðir verjuna.

Samandráttur:

Microscopic source of squeezed light

A microscopic light source paves the way for large and complex quantum optics experiments using a centimetre scale chip, that can help harnessing the power of quantum physics

Heisenbergs uncertainty principle predicts that the uncertainty of the amplitude and phase of light is connected. A consequence of this quantum theory is that there must be fluctuations of electric and magnetic fields, even in vacuum. Squeezed light is light that has an uncertainty of either the phase or amplitude that is lower than vacuum.

Squeezed state have applications in quantum sensing, quantum computing, and quantum communication. The reduced uncertainty can be leveraged to increase the sensitivity of measurements. In quantum communication squeezed states of light allow for greater transmission length and device-independent protocols. In quantum computing squeezed states are used as a resource to build large entangled states, so-called cluster states, for computing and as a resource to generate states for fault-tolerant quantum computing.

Quantum optical experiments are built using non-classical light sources, interferometric circuits and detectors. Experiments using bulk optics on optical tables occupy significant space, while each and every component adds an individual phase to the light. Integrated photonics is a promising alternative that, with its microscopic components, can transform a table-sized experiment to a centimetre-scale, inherently phase stable chip.

This thesis discusses how to generate squeezed light on an integrated thin film lithium niobate platform. The main results of this thesis is the demonstration of squeezed light sources using modal phase-matching in micro ring resonators. For squeezed light sources, this is a new method that requires fewer fabrication steps than the traditional methods and is easier to produce. The squeezed produced from the squeezed light source has a lower uncertainty than what has previously been achieved with the type of waveguide used in this thesis. 

Finally the thesis makes designs for squeezed light sources with high efficiencies, opening the door for devices generating states that can be used for fault-tolerant quantum computing, as well as advanced applications in quantum sensing and computation. 

Sí fakliga vangan hjá Tummas Napoleon Arge

Kelda: DTU